图 | OpenSLS 打印的小鼠肝脏动脉系统尼龙模型(来源:Youtube/Rice University)
2017 年,Miller 和贝勒医学院生物物理学家 Mary Dickinson 实验室的一个团队展示了如何使用人体内皮细胞和间充质干细胞来启动脉管形成的过程。研究证实了这些由”诱导多能干细胞”分化成的内皮细胞具有形成毛细管样结构的能力,无论是在称为纤维蛋白的天然材料中,还是在称为明胶甲基丙烯酸酯的半合成材料中。
2018 年,Miller 和莱斯大学生物工程师 Omid Veiseh 一起尝试将细胞疗法应用与先进的 3D 打印技术相结合,用于 1 型糖尿病治疗。他们开发的容纳胰岛细胞和底层血管网络的 3D 打印水凝胶,能够保护植入的胰岛细胞免受免疫系统影响的封装材料,同时让细胞生长和应对环境变化。
而在最新的这项研究中,为了设计出复杂的肺脏结构,Miller还与马萨诸塞州一家设计公司 Nervous System 的联合创始人 Jessica Rosenkrantz 和 Jesse Louis-Rosenberg合作。
“当初我们创立 Nervous System 时,目标是将自然界中的算法应用于设计产品的新方法,”Rosenkrantz 说。”没想到现在我们有机会设计活组织。”
图 | 莱斯大学生物工程学助理教授 Jordan Miller(来源:Jeff Fitlow/RiceUniversity)
Miller 表示,新的生物打印系统也可以产生血管内特征,如只允许血液向一个方向流动的二尖瓣。在人体中,血管内瓣膜存在于心脏、腿静脉和淋巴系统中。”通过增加多种脉管和脉管内结构,我们为工程活组织引入了一套广泛的设计自由。”Miller 说,”我们现在可以自由地建造身体中发现的许多错综复杂的结构。”
研究团队正在通过一家名为 Volumetric 的休斯顿创业公司将研究的关键方面商业化。Miller 的实验室也已经在使用新的设计和生物打印技术来探索更复杂的结构。”我们对人体结构的探索才刚刚开始,我们还有很多东西需要学习。”
而一贯支持开源 3D 打印技术的 Mille 也表示,发表在 Science 杂志上的所有实验数据均可免费获得。此外,用于构建立体光刻设备所需的所有 3D 打印文件,以及本次研究中打印的每个水凝胶的设计文件,均是可获取的。
“开放水凝胶的设计文件,将允许其他人继续探索我们的努力内容,甚至他们会使用一些今天不存在的未来 3D 打印技术。”Miller 说。